219 research outputs found

    Editorʼs foreword

    Get PDF

    An Analytical Solution for Probabilistic Guarantees of Reservation Based Soft Real-Time Systems

    Full text link
    We show a methodology for the computation of the probability of deadline miss for a periodic real-time task scheduled by a resource reservation algorithm. We propose a modelling technique for the system that reduces the computation of such a probability to that of the steady state probability of an infinite state Discrete Time Markov Chain with a periodic structure. This structure is exploited to develop an efficient numeric solution where different accuracy/computation time trade-offs can be obtained by operating on the granularity of the model. More importantly we offer a closed form conservative bound for the probability of a deadline miss. Our experiments reveal that the bound remains reasonably close to the experimental probability in one real-time application of practical interest. When this bound is used for the optimisation of the overall Quality of Service for a set of tasks sharing the CPU, it produces a good sub-optimal solution in a small amount of time.Comment: IEEE Transactions on Parallel and Distributed Systems, Volume:27, Issue: 3, March 201

    Circumscribing datalog: Expressive power and complexity

    Get PDF
    AbstractIn this paper we study a generalization of datalog, the language of function-free definite clauses. It is known that standard datalog semantics (i.e., least Herbrand model semantics) can be obtained by regarding programs as theories to be circumscribed with all predicates to be minimized. The extension proposed here, called datalogcirc, consists in considering the general form of circumscription, where some predicates are minimized, some predicates are fixed, and some vary. We study the complexity and the expressive power of the language thus obtained. We show that this language (and, actually, its non-recursive fragment) is capable of expressing all the queries in DB-co-NP and, as such, is much more powerful than standard datalog, whose expressive power is limited to a strict subset of PTIME queries. Both data and combined complexities of answering datalogcirc queries are studied. Data complexity is proved to be co-NP-complete. Combined complexity is shown to be in general hard for co-NE and complete for co-NE in the case of Herbrand bases containing k distinct constant symbols, where k is bounded

    Modeling a distributed Heterogeneous Communication System using Parametric Timed Automata

    Get PDF
    In this report, we study the application of the Parametric Timed Automata(PTA) tool to a concrete case of a distributed Heterogeneous Communication System (HCS). The description and requirements of HCS are presented and the system modeling is explained carefully. The system models are developed in UPPAAL and validated by different test cases. Part of the system models are then converted into parametric timed automata and the schedulability checking is run to produce the schedulability regions

    Reasoning with minimal models: efficient algorithms and applications

    Get PDF
    AbstractReasoning with minimal models is at the heart of many knowledge-representation systems. Yet it turns out that this task is formidable, even when very simple theories are considered. In this paper, we introduce the elimination algorithm, which performs, in linear time, minimal model finding and minimal model checking for a significant subclass of positive CNF theories which we call positive head-cycle-free (HCF) theories. We also prove that the task of minimal entailment is easier for positive HCF theories than it is for the class of all positive CNF theories. Finally, we show how variations of the elimination algorithm can be applied to allow queries posed on disjunctive deductive databases and disjunctive default theories to be answered in an efficient way

    Experimental Evaluation of the Real-Time Performance of Publish-Subscribe Middlewares

    Get PDF
    REACTION 2013. 2nd International Workshop on Real-time and distributed computing in emerging applications. December 3rd, 2013, Vancouver, Canada.The integration of the complex network of modules composing a modern distributed embedded systems calls for a middleware solution striking a good tradeoff between conflicting needs such as: modularity, architecture independence, re-use, easy access to the limited hardware resources and ability to respect real–time constraints. Several middleware architectures proposed in the last years offer reliable and easy to use abstractions and intuitive publish-subscribe mechanism that can simplify system development to a good degree. However, a complete compliance with the different requirements of assistive robotics application (first and foremost real–time constraints) remains to be investigated. This paper evaluates the performance of these solutions in terms of latency and scalability
    • …
    corecore